Document Title

512Kx8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No.	<u>History</u>	Draft Data	<u>Remark</u>
0.0	Initial Draft	July 29, 2002	Preliminary
0.1	Revised - Added 55ns product(Vcc = 3.0V~3.6V)	October 14, 2002	Preliminary
0.2	Revised - Added Commercial product	December 2, 2002	Preliminary
0.21	Revised - Errata correction : corrected commercial product family name from K6X4008T1F-F to K6X4008T1F-B in PRODUCT FAMILY.	March 26, 2003	Preliminary
1.0	Finalized - Changed lcc from 4mA to 2mA - Changed lcc1 from 4mA to 3mA - Changed lcc2 from 30mA to 25mA - Changed lss1(Commercial) from 15μA to 10μA - Changed lss1(industrial) from 20μA to 10μA - Changed lss1(Automotive) from 30μA to 20μA - Changed lbR(Commercial) from 15μA to 10μA - Changed lbR(Industrial) from 20μA to 10μA - Changed lbR(industrial) from 20μA to 10μA - Changed lbR(Automotive) from 30μA to 20μA	September 16, 2003	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

512K×8 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

• Process Technology: Full CMOS

• Organization: 512K×8

Power Supply Voltage: 2.7~3.6VLow Data Retention Voltage: 2V(Min)

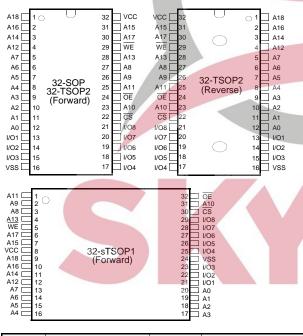
• Three State Outputs

• Package Type: 32-SOP-525, 32-TSOP2-400F/R

32-TSOP1-0813.4F

GENERAL DESCRIPTION

The K6X4008T1F families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support various operating temperature range and have various package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.


PRODUCT FAMILY

		Vcc		Power Dis	ssipation			
Product Family	Operating Temperature	Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type		
K6X4008T1F-B	Commercial(0~70°C)		55 ¹⁾ /70 ²⁾ /85ns	10μΑ		32-50	DP-525, 32-TSOP1-0813.4F	
K6X4008T1F-F	Industrial(-40~85°C)	2.7~3.6V 55 ¹¹ /70 ²¹ /85ns 10μA		10		7	32-TSOP2-400F/R	
K6X4008T1F-Q	Automotive(-40~125°C)		70 ²⁾ /85ns	20μΑ		32-SC	OP-525, 32-TSOP1-0813.4F 32-TSOP2-400F	


^{1.} This parameter is measured in the voltage range of 3.0V~3.6V with 30pF test load.

PIN DESCRIPTION

FUNCTIONAL BLOCK DIAGRAM

Name	Function	Name	Function
A0~A18	Address Inputs	Vcc	Power
WE	Write Enable Input	Vss	Ground
CS	Chip Select Input	I/O1~I/O8	Data Inputs/Outputs
OE	Output Enable Input		

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

This parameter is measured with 30pF test load.

PRODUCT LIST

Commercial P	roducts(0~70°C)	Industrial Pro	ducts(-40~85°C)	Automotive Pro	oducts(-40~125°C)
Part Name	Function	Part Name	Function	Part Name	Function
K6X4008T1F-GB55 ¹⁾ K6X4008T1F-GB70 K6X4008T1F-GB85 K6X4008T1F-YB55 ¹⁾ K6X4008T1F-YB85 K6X4008T1F-YB85 K6X4008T1F-VB55 ¹⁾ K6X4008T1F-VB70 K6X4008T1F-VB85 K6X4008T1F-MB55 ¹⁾ K6X4008T1F-MB55 ¹⁾ K6X4008T1F-MB85	32-SOP, 55ns, LL 32-SOP, 70ns, LL 32-SOP, 85ns, LL 32-STSOP1-F, 55ns, LL 32-STSOP1-F, 85ns, LL 32-TSOP2-F, 55ns, LL 32-TSOP2-F, 70ns, LL 32-TSOP2-F, 75ns, LL 32-TSOP2-R, 55ns, LL 32-TSOP2-R, 55ns, LL 32-TSOP2-R, 55ns, LL	K6X4008T1F-GF55 ¹⁾ K6X4008T1F-GF70 K6X4008T1F-GF85 K6X4008T1F-YF55 ¹⁾ K6X4008T1F-YF85 K6X4008T1F-YF85 K6X4008T1F-VF55 ¹⁾ K6X4008T1F-VF70 K6X4008T1F-VF85 K6X4008T1F-MF55 ¹⁾ K6X4008T1F-MF85	32-SOP, 55ns, LL 32-SOP, 70ns, LL 32-SOP, 85ns, LL 32-STSOP1-F, 55ns, LL 32-STSOP1-F, 85ns, LL 32-STSOP2-F, 55ns, LL 32-TSOP2-F, 70ns, LL 32-TSOP2-F, 75ns, LL 32-TSOP2-F, 85ns, LL 32-TSOP2-R, 55ns, LL 32-TSOP2-R, 55ns, LL 32-TSOP2-R, 85ns, LL	K6X4008T1F-GQ70 K6X4008T1F-GQ85 K6X4008T1F-YQ70 K6X4008T1F-YQ85 K6X4008T1F-VQ70 K6X4008T1F-VQ85	32-SOP, 70ns, L 32-SOP, 85ns, L 32-STSOP1-F, 70ns, L 32-STSOP1-F, 85ns, L 32-TSOP2-F, 70ns, L 32-TSOP2-F, 85ns, L

^{1.} Operating voltage range is 3.0V~3.6V

FUNCTIONAL DESCRIPTION

CS	OE	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	H	High-Z	Output Disabled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS1)

ltem	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to Vcc+0.3(max. 3.9V)	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 3.9	-	
Power Dissipation	PD	1.0	W	- /
Storage temperature	Тѕтс	-65 to 150	°C	-
		0 to 70	°C	K6F4008T1F-B
Operating Temperature	TA	-40 to 85	°C	K6F4008T1F-F
		-40 to 125	°C	K6F4008T1F-Q

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

ltem	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	3.0/3.3	3.6	V
Ground	Vss	0	0	0	V
Input high voltage	ViH	2.2	-	Vcc+0.2 ²⁾	V
Input low voltage	VIL	-0.23)	-	0.6	V

Note:

- Commercial Product: T_A=0 to 70°C, otherwise specified Industrial Product: T_A=-40 to 85°C, otherwise specified Automotive Product: T_A=-40 to 125°C, otherwise specified
- 2. Overshoot: Vcc+2.0V in case of pulse width ≤ 30ns
- 3. Undershoot: -2.0V in case of pulse width \leq 30ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

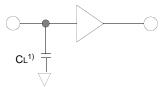
CAPACITANCE¹⁾ (f=1MHz, Ta=25°C)

Item	Symbol Test Condition		Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Cio	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	ILI	VIN=Vss to Vcc	-1		1	μΑ	
Output leakage current	ILO	CS=VIH or OE=VIH or WE=VIL VIO=Vss	CS=VIH or OE=VIH or WE=VIL VIO=Vss to Vcc				
Operating power supply current	Icc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read	-	-\	2	mA	
Average operating current	Icc1	Cycle time=1µs, 100% duty, lio=0mA CS≤0.2V,Vin≤0	0.2V or Vin≥Vcc-0.2V	-	-	3	mA
Average operating current	ICC2	Cycle time=Min, 100% duty, Iio=0mA, CS=VIL, VIN=VIH or VIL			1	25	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Vон	IOH=-1.0mA		2.4		-	V
Standby Current(TTL)	IsB	CS=VIH, Other inputs = VIL or VIH		-	-	0.3	mA
			K6X4008T1F-B	-	-	10	μΑ
Standby Current (CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	K6X4008T1F-F	-	-	10	μΑ
			K6X4008T1F-Q	-	-	20	μΑ



AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Input/Output Reference)

Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load(see right): CL=100pF+1TTL
CL¹)=30pF+1TTL

1. 55ns, 70ns product

1. Including scope and jig capacitance

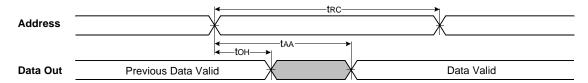
AC CHARACTERISTICS

(Vcc=2.7~3.6V, Commercial product: Ta=0 to 70°C, Industrial product: Ta=-40 to 85°C, Automotive product: Ta=-40 to 125°C)

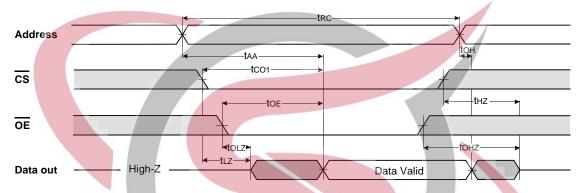
					Speed	d Bins				
	Parameter List		55	ns¹)	70	ns	85	ins	Units	
			Min	Max	Min	Max	Min	Max		
	Read cycle time	trc	55		70	-	85	-	ns	
	Address access time	tAA	-	55		70	7	85	ns	
	Chip select to output	tco	-	55	-	70	7-	85	ns	
	Output enable to valid output	tOE	-	25		35	-	40	ns	
Read	Chip select to low-Z output	tLZ	10	-	10	-	10	-	ns	
	Output enable to low-Z output	tolz	5	-	5	-\	5	-	ns	
	Chip disable to high-Z output	tHZ	0	20	0	25	0	25	ns	
	Output disable to high-Z output	tonz	0	20	0	25	0	25	ns	
	Output hold from address change	tон	10		10	-	10	-	ns	
	Write cycle time	twc	55	-	70	-/	85	-	ns	
	Chip select to end of write	tcw	45	-	60	/ <i>/</i> -	70	-	ns	
	Address set-up time	tas	0	-	0	/ - /	0	-	ns	
	Address valid to end of write	taw	45	-	60	-/	70	- 4	ns	
Write	Write pulse width	twp	40	-	55	/-	55	- /	ns	
VVIILE	Write recovery time	twr	0		0	-	0	-	ns	
	Write to output high-Z	twnz	0	20	0	25	0	25	ns	
	Data to write time overlap	tow	25	-	30	-	35	-	ns	
	Data hold from write time	tDH	0	-	0	-	0	-	ns	
	End write to output low-Z	tow	5	-	5	-	5	- 1	ns	

^{1.} Voltage range is 3.0V~3.6V for commercial and industrial product.

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition		Min	Typ ¹⁾	Max	Unit
Vcc for data retention	VDR	CS≥Vcc-0.2V			-	3.6	V
			K6X4008T1F-B	-		10	μΑ
Data retention current	IDR	Vcc=3.0V, CS≥Vcc-0.2V K6X4008T1F-F		-	0.5	10	μΑ
		K6X4008T1F-Q				20	μΑ
Data retention set-up time	tsdr	See data retention wavefor	0	-	-	ms	
Recovery time	trdr	- Occ data retention wavelor	See data retention waveform				1113

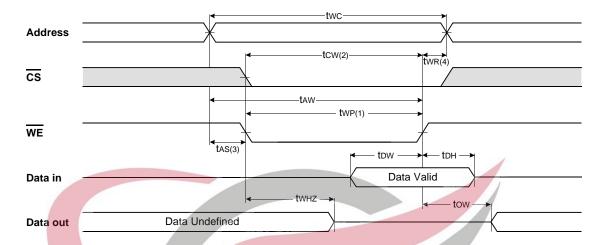
^{1.} Typical values are measured at T_A = 25°C and not 100% tested.



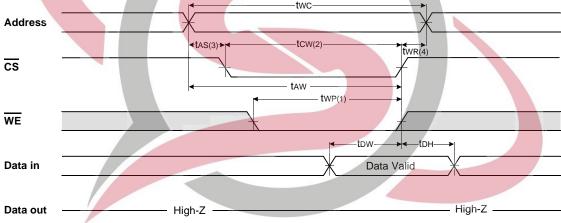
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL, \overline{WE} = VIH)$

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

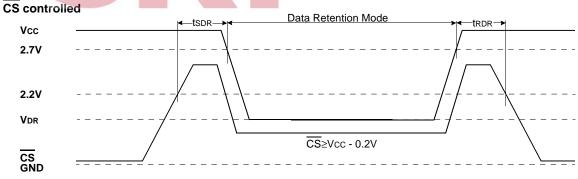


NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHz(Max.) is less than tLz(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

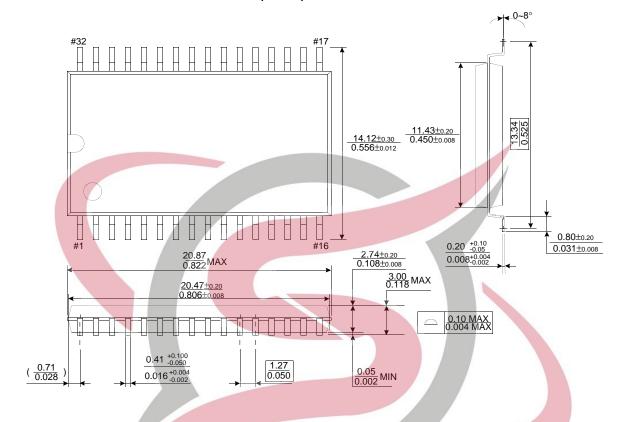


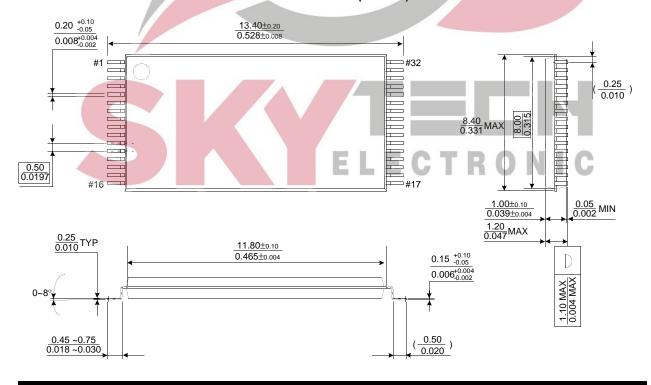
NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$. A write begins at the latest transition among $\overline{\text{CS}}$ going Low and $\overline{\text{WE}}$ going low: A write end at the earliest transition among $\overline{\text{CS}}$ going high and $\overline{\text{WE}}$ going high, two is measured from the begining of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change, twn is applied in case a write ends with CS or WE going high.

DATA RETENTION WAVE FORM

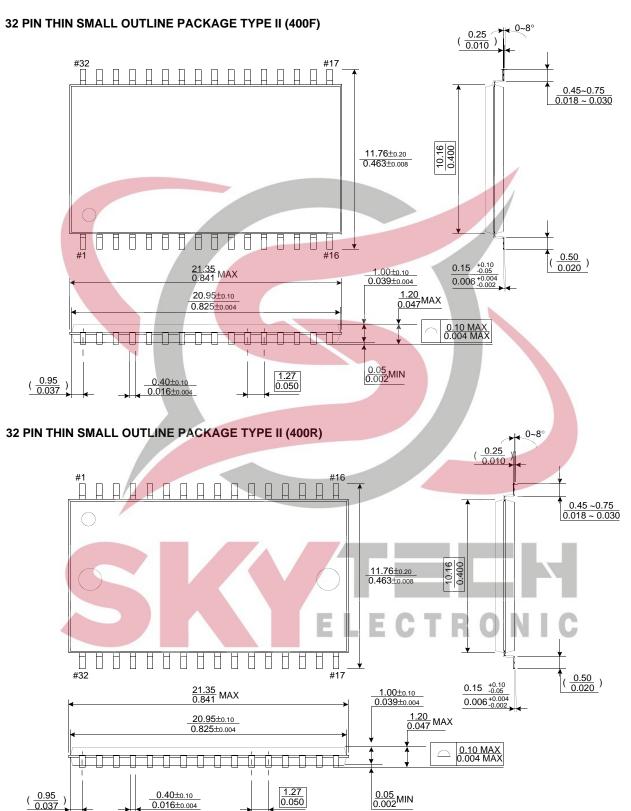
ELECTRONIC




PACKAGE DIMENSIONS

Units: millimeters(inches)

32 PIN PLASTIC SMALL OUTLINE PACKAGE (525mil)


32 PIN SMALLER THIN SMALL OUTLINE PACKAGE TYPE I (0813.4F)

PACKAGE DIMENSIONS

Units: millimeters(inches)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

Published by WWW.\$KYTECH.ir